Tutorial 9

Decomposition of state space for periodic MC

Let $X_{n}, n \geq 0$, be an irreducible Markov chain with state space S. The period is given by

$$
d=\operatorname{gcd}\left\{n \geq 1: P^{n}(x, x)>0\right\}, \quad x \in S
$$

where gcd means the greatest common divisor and d is independent of the choice of x. Notice that it may be not true that $P^{d}(x, x)>0$. Refer to Exercise 22 in Chapter 2 of the textbook for an example.

Suppose that the chain is periodic $(d \geq 2)$. Let $Y_{m}=X_{m d}, m \geq 0$. Then $Y_{m}, m \geq 0$, is an aperiodic Markov chain with transition matrix $Q=P^{d}$, since the period is $\operatorname{gcd}\left\{m \geq 1: Q^{m}(x, x)=P^{m d}(x, x)>0\right\}=\frac{d}{d}=1$. Moreover, the chain $\left\{Y_{m}\right\}$ is reducible and S is a union of d irreducible closed sets:

$$
\begin{equation*}
S=C_{1} \cup C_{2} \cup \cdots \cup C_{d}, \tag{1}
\end{equation*}
$$

where for $i \in\{1,2, \ldots, d\}$ and $x \in C_{i}$ (we set $C_{d+1}=C_{1}$ here) we have

$$
P(x, y)>0 \quad \text { only if } \quad y \in C_{i+1}
$$

Example. $S=\{1,2\}$.

$$
P=\left(\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 1
\end{array}\right)
$$

Then $P^{2}=I$ with period $d=2$ and $S=C_{1} \cup C_{2}=\{1\} \cup\{2\}$. It has a stationary distribution $\pi=(1 / 2,1 / 2)$.

Example. $S=\{1,2,3,4\}$,

$$
P=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
2 & & & \frac{1}{3} \\
3 & 0 & 0 & 3 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Observe that there are two ' 3 -circles': $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ and $2 \rightarrow 3 \rightarrow 4 \rightarrow 2$. Hence any two states can communicate, so the chain is irreducible.

Let $\pi=(\pi(1), \pi(2), \pi(3), \pi(4))$ be the stationary distribution. Then $\pi P=\pi$ implies that

$$
\left\{\begin{array}{l}
\frac{2}{3} \pi(3)=\pi(1) \\
\pi(1)+\pi(4)=\pi(2) \\
\pi(2)=\pi(3) \\
\frac{1}{3} \pi(3)=\pi(4)
\end{array}\right.
$$

Together with $\pi(1)+\pi(2)+\pi(3)+\pi(4)=1$, we get $\pi=(\pi(1), \pi(2), \pi(3), \pi(4))=\left(\frac{2}{9}, \frac{1}{3}, \frac{1}{3}, \frac{1}{9}\right)$.

Note that

$$
P^{2}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
2 & 0 & 0 & \frac{1}{3} \\
3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad P^{3}=\left(\begin{array}{cccc}
\frac{2}{3} & 0 & 0 & \frac{1}{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{2}{3} & 0 & 0 & \frac{1}{3}
\end{array}\right), \quad P^{4}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{2}{3} & 0 & 0 & \frac{1}{3} \\
0 & 1 & 0 & 0
\end{array}\right)=P
$$

Inductively we have $P^{3 k-2}=P, P^{3 k-1}=P^{2}$, and $P^{3 k}=P^{3}$ for all $k \geq 1$. Hence the limit $\lim _{k \rightarrow \infty} P^{k}$ does not exists even the chain has a unique stationary distribution.
Remark. It can be checked that there are two eigenvalues $\frac{1}{2}(-1 \pm i \sqrt{3})$ of P whose moduli is not less than 1 i.e. it does not satisfy the third assumption in theorem 2 of tutorial note 7 .

Easily we get the period $d=3$ and $S=C_{1} \cup C_{2} \cup C_{3}$ with

$$
C_{1}=\{1,4\}, \quad C_{2}=\{2\}, \quad C_{3}=\{3\}
$$

Convergence to the stationary distribution: periodic case

Now we continue to study the limit behavior of a MC, and more precisely, to study the relation between the limit of $P^{k}(x, y)$ and the stationary distribution.

In Tutorial 6, we discussed some irreducible cases under 3 assumptions (actually implies the aperiodicity), so that the stationary distribution π exists and each row of the limit matrix $\lim _{k \rightarrow \infty} P^{k}$ is π. Moreover, a basic theorem says that (see textbook, aperiodic case in Theorem 7 in P73):

Theorem 1. If a MC is irreducible, positive recurrent and aperiodic, then the stationary distribution π uniquely exists and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P^{k}(x, y)=\pi(y)=\frac{1}{m_{y}} \tag{2}
\end{equation*}
$$

where $m_{y}=E_{y}\left(T_{y}\right)$ is the mean return time to y.
Also in Tutorial 6, we learnt a method to calculate the limit matrix $\lim _{k \rightarrow \infty} P^{k}$ when the chain is reducible and each block of an irreducible closed set satisfies the 3 assumptions. So all the chains we have discussed are still aperiodic.

Until now we know nothing about the periodic case. Actually in periodic case, $\lim _{k \rightarrow \infty} P^{k}$ does not exist even if the chain has a unique stationary distribution. But for the limit of subsequence, the following theorem is really crucial:

Theorem 2. Let $X_{n}, n \geq 0$, be an irreducible positive recurrent MC having stationary distribution π. If the chain is periodic with period d, then for any $x, y \in S$, there is an integer $r, 0 \leq r<d$, such that $P^{n}(x, y)>0$ only if $n=m d+r$ for some $m \in \mathbb{N}$, and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P^{m d+r}(x, y)=d \cdot \pi(y) \tag{3}
\end{equation*}
$$

For $x \in C_{i}$ and $y \in C_{j}$,

$$
r= \begin{cases}j-i, & \text { if } i \leq j, \\ j+d-i, & \text { if } i>j\end{cases}
$$

Proof. We prove this through the following three steps.

Step 1. Consider the case of $x=y$.
For any $x \in \mathcal{S}$, by the definition of period ($d=$ g.c.d. $\left\{n \geq 1: P^{n}(x, x)>0\right\}$),

$$
P^{n}(x, x)>0 \quad \text { only if } \quad n=m d \text { for some } m \in \mathbb{N} .
$$

Let $Y_{m}=X_{m d}, m \geq 0$. Then follows (1) we have a decomposition of \mathcal{S}. Suppose that x belongs to some irreducible closed set \mathcal{C}_{i}.

Let $X_{0}=Y_{0}=x$, then the mean return time to x with respect to Y_{m} is m_{x} / d, where m_{x} is the mean return time to x with respect to X_{n}. If we restrict the chain Y_{m} to a smaller state space \mathcal{C}_{i}, then the new MC is irreducible, positive recurrent and aperiodic. By Theorem 1, the new chain has a unique stationary distribution π_{i} and

$$
\lim _{m \rightarrow \infty} Q^{m}(x, x)=\pi_{i}(x)=\frac{1}{m_{x} / d}=d / m_{x}=d \pi(x)
$$

Hence for any $x \in \mathcal{S}$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P^{m d}(x, x)=d \pi(x) \tag{4}
\end{equation*}
$$

Step 2. Find r for general x, y.
Let $x, y \in \mathcal{S}$, and $r_{1}=\min \left\{n \geq 1: P^{n}(x, y)>0\right\}$.
By irreducibility, we can choose n_{1} such that $P^{n_{1}}(y, x)>0$. Then

$$
P^{r_{1}+n_{1}}(x, x) \geq P^{r_{1}}(x, y) P^{n_{1}}(y, x)>0
$$

which implies that d is a divisor of $r_{1}+n_{1}$. If n satisfies $P^{n}(x, y)>0$, then

$$
P^{n+n_{1}}(x, x) \geq P^{n}(x, y) P^{n_{1}}(y, x)>0
$$

so that d is also a divisor of $n+n_{1}$. As a result, d is a divisor of $n-r_{1}$.
Let $r_{1}=m_{1} d+r$, where $0 \leq r<d$, then

$$
P^{n}(x, y)>0 \quad \text { only if } \quad n=m d+r \text { for some } m \in \mathbb{N}
$$

Remark. One can check that for $x \in \mathcal{C}_{i}$ and $y \in \mathcal{C}_{j}$,

$$
r= \begin{cases}j-i, & \text { if } i \leq j \\ j+d-i, & \text { if } i>j\end{cases}
$$

Step 3. Prove formula (3).
Now we can write

$$
\begin{aligned}
P^{m d+r}(x, y) & =\sum_{j=1}^{m d+r} P_{x}\left(T_{y}=j\right) P^{m d+r-j}(y, y) \\
& =\sum_{k=0}^{m} P_{x}\left(T_{y}=k d+r\right) P^{(m-k) d}(y, y)
\end{aligned}
$$

Apply the bounded convergence theorem (in tutorial 7) to

$$
a_{m}(k)= \begin{cases}P^{(m-k) d}(y, y), & 0 \leq k \leq m \\ 0 . & k>m\end{cases}
$$

and $p_{k}=P_{x}\left(T_{y}=k d+r\right)$, then by (4),

$$
\begin{aligned}
\lim _{m \rightarrow \infty} P^{m d+r}(x, y) & =\lim _{m \rightarrow \infty} \sum_{k=0}^{\infty} P_{x}\left(T_{y}=k d+r\right) P^{(m-k) d}(y, y) \\
& =\sum_{k=0}^{\infty} P_{x}\left(T_{y}=k d+r\right) \lim _{m \rightarrow \infty} P^{(m-k) d}(y, y) \\
& =\sum_{k=0}^{\infty} d \pi(y) P_{x}\left(T_{y}=k d+r\right) \\
& =d \pi(y) .
\end{aligned}
$$

Example. Consider the Ehrenfest chain with $d=3$. The transition matrix is

$$
P=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{2}{3} & 0 \\
0 & \frac{2}{3} & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

The state space $S=\{0,1,2,3\}$, we have $C_{1}=\{0,2\}, C_{2}=\{1,3\}$. Obviously the period of the chain is 2 . By direct calculation, the chain has a unique stationary distribution $\pi=\left(\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\right)$. Simply applying Theorem 2, we have

$$
\lim _{k \rightarrow \infty} P^{2 k}=\left(\begin{array}{cccc}
\frac{1}{4} & 0 & \frac{3}{4} & 0 \\
0 & \frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{4} & 0 & \frac{3}{4} & 0 \\
0 & \frac{3}{4} & 0 & \frac{1}{4}
\end{array}\right) \quad \text { and } \quad \lim _{k \rightarrow \infty} P^{2 k+1}=\left(\begin{array}{cccc}
0 & \frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{4} & 0 & \frac{3}{4} & 0 \\
0 & \frac{3}{4} & 0 & \frac{1}{4} \\
\frac{1}{4} & 0 & \frac{3}{4} & 0
\end{array}\right) .
$$

